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LETTER TO THE EDITOR

Quantum Fisher–Bures information of two-level systems
and a three-level extension

Paul B Slater†
Community and Organization Research Institute, University of California, Santa Barbara,
CA 93106-2150, USA

Received 17 November 1995

Abstract. Braunstein and Caves have recently demonstrated that the Bures metric on the
mixed quantum states is equivalent—up to a proportionality factor of four—to the statistical
distinguishability or quantum Fisher information metric. The volume element of these metrics
can then—adapting a fundamental Bayesian principle of Jeffreys to the quantum context—serve
as a reparametrization-invariant prior measure over the quantum states. The implications of this
line of reasoning for the two-level systems, in general, and an embedding of them into a certain
set of three-level systems are investigated.

In this letter, we study, among other topics, the four-dimensional convex set of three-level
(spin-1) density matrices of the particular form(0 6 v 6 1)

ρ = 1

2

( v + z 0 x − iy
0 2− 2v 0

x + iy 0 v − z

)
. (1)

For v = 1, the middle level is inaccessible and, in effect, the two-level (spin-1
2) density

matrices

ρ = 1

2

(
1 + z x − iy
x + iy 1 − z

)
(2)

are recovered. The domain of admissible (due to trace and non-negativity constraints) values
of the parametersx, y andz is then the unit ball (Bloch or Poincaré sphere),x2+y2+z2 6 1.
So, equation (1) serves as one of many possible extensions or generalizations of (2) (cf [1]).
(Physical photons, although spin-1 particles, are, due to their masslessness, describable
by (2).)

Let us attach to the domain of 2× 2 density matrices (2), the Bures metric given by [2,
formula (3.7)], cf [3, 4]

1

4
Tr

{
dρ dρ + 1

|ρ| (dρ − ρ dρ)(dρ − ρ dρ)

}
. (3)

The matrix(gij ; i, j = x, y, z) corresponding to this metric is

1

4(1 − x2 − y2 − z2)

 1 − y2 − z2 xy xz

xy 1 − x2 − z2 yz

xz yz 1 − x2 − y2

 . (4)
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Its inverse(gij ) assumes the simple form

4

( 1 − x2 −xy −xz

−xy 1 − y2 −yz

−xz −yz 1 − z2

)
. (5)

The associated volume element [5] of the Bures metric is obtained by taking the square root
of the determinant of (4). The result is

1/8(1 − x2 − y2 − z2)1/2 dx dy dz . (6)

Braunstein and Caves [6] have shown that the Bures metric (which extends to mixed
states the Fubini–Study metric on pure states) is simply proportional (by a factor of four) to
the Fisher information (statistical distinguishability) metric on the quantum states. Relying
upon this essential equivalence, together with Jeffreys’ principle [7–9] for using the square
root of the determinant of the (classical) Fisher information matrix as a reparametrization-
invariant prior, we advance (6) as a prior measure over the two-level density matrices (2).
From it—through a normalization—one obtains a prior probability distribution

p(x, y, z) = 1/π2(1 − x2 − y2 − z2)1/2 (7)

over the unit ball,x2 +y2 +z2 6 1. (The average of the von Neumann entropy,− Tr ρ ln ρ,
over the unit ball is then 2 ln 2− 7/6 ≈ 0.219 627 7, cf [10].)

Since ∫ (1−x2−y2)1/2

−(1−x2−y2)1/2
p(x, y, z) dz = 1/π (8)

the (three) bivariate marginal probabilities of (7) are uniform distributions over unit discs
(x2 + y2 6 1, . . .)—agreeing, in this particular manner, with Laplace’s principle of
insufficient reason [11]. Then, the three univariate marginal distributions are of the form∫ (1−x2)1/2

−(1−x2)1/2
1/π dy = 2(1 − x2)1/2/π (−1 6 x 6 1) . (9)

Under the transformation,x = 2q − 1, this becomes a beta distribution (figure 1),

8q1/2(1 − q)1/2/π (0 6 q 6 1) (10)

with its two parameters equalling32. The family of beta distributions is typically employed
for the role of prior distributions over binomial(0/1) parameters [9].

As an illustration of the application of Bayes’ theorem [8, 9] to the estimation of quantum
systems [12–14], let us hypothesize an experimental situation in which spin measurements
are performed on each of fourteen replicas of a two-level quantum system—three are taken
in the X-direction with two ‘ups’ recorded, five in theY -direction with three ‘ups’ and six
in the Z-direction with two ‘ups’. Then the posterior (modified) probability distribution
over the unit ball is proportional to the product of the prior (7) and the likelihood(

1 − x

2

) (
1 + x

2

)2 (
1 − y

2

)2 (
1 + y

2

)3 (
1 − z

2

)4 (
1 + z

2

)2

(11)

since in a two-level system with parametersx, y, z, the probability of an ‘up’ in theX-
direction is(1+x)/2 and a ‘down’,(1−x)/2, . . . . This product can be normalized, through
an integration over the unit ball, to comprise the posterior probability distribution

7168(1 − x)(1 + x)2(1 − y)2(1 + y)3(1 − z)4(1 + z)2/1903π2(1 − x2 − y2 − z2)1/2 .

(12)
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Figure 1. Univariate marginal probability distribution for two-level systems, expressed as a beta
distribution (10).

Let us now attempt to extend this line of analysis to the three-level density matrices of
the form (1). The Bures metric for such systems is given by [2, formula (3.8)]

1

4
Tr

{
dρ dρ+ 3

1−Tr ρ3
(dρ−ρ dρ)(dρ−ρ dρ) + 3|ρ|

1−Tr ρ3
(dρ−ρ−1 dρ)(dρ − ρ−1 dρ

}
.

(13)

The result is representable by the matrix(gij ; i, j = v, x, y, z)

1

4(v2 − x2 − y2 − z2)

×


(x2 + y2 + z2 − v)/(1 − v) −x −y −z

−x (y2 + z2 − v2)/v xy/v xz/v

−y xy/v (x2 + z2 − v2)/v yz/v

−z xz/v yz/v (x2 + y2 − v2)/v

 (14)

having the particularly simple inverse(gij ; i, j = v, x, y, z)

4


(1 − v)v (1 − v)x (1 − v)y (1 − v)z

(1 − v)x v − x2 −xy −xz

(1 − v)y −xy v − y2 −yz

(1 − v)z −xz −yz v − z2

 . (15)

(Removing the factor four from (15) yields the inverse of the quantum Fisher information
matrix [6, 15–17]. This then serves—in a non-Bayesian application—as a (Cramér–Rao)
lower bound, in the sense of non-negative definiteness, on the covariance matrix of unbiased
estimates of the parameters,v, x, y, z [15–17].)

The square root of the determinant of (14) is (cf equation (6))

1/16v(1 − v)1/2(v2 − x2 − y2 − z2)1/2 . (16)

This can be normalized, using spherical coordinates(r, θ, φ) to perform the integrations, to

3/4π2v(1 − v)1/2(v2 − x2 − y2 − z2)1/2 . (17)
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Figure 2. Bivariate marginal prob-
ability distribution over auxiliary
parameter(v) and radial parame-
ter (r) for the extended system.

Figure 3. Univariate marginal(β) probability distribution (19) over auxiliary parameter(v) for
extended system.

(The ranges, 06 r = (x2 + y2 + z2)1/2 6 v and 06 v 6 1 were employed.) In spherical
coordinates, equation (17) assumes the form

3r2 sinθ/4π2v(1 − v)1/2(v2 − r2)1/2 . (18)

(Figure 2 shows the marginal distribution of (18) overr and v.) The univariate marginal
distribution of (17) and (18) over the variablev is, again (cf equation (10)), an (asymmetric)
beta distribution (figure 3),

3v(1 − v)−1/2/4 (0 6 v 6 1) (19)

with its two parameters equalling 2 and1
2. Holdingv fixed (V ), the conditional distributions

of (17) and (18) are

1/π2V 2(V 2 − x2 − y2 − z2)1/2 (20)

r2 sinθ/π2V 2(V 2 − r2)1/2 . (21)
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(For V = 1, equation (20) reduces to (7).) However, integrations could not be exactly nor
numerically performed overv to obtain the corresponding marginal distributions overr, θ, φ

or x, y, z.

I would like to express appreciation to the Institute for Theoretical Physics for computational
support in this research.
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